SECTION 23 05 93 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Specification Sections, apply to this Section.

B. Appendix A in the Request for Proposal (RFP) shows the original design documents.

C. Appendix C in the RFP shows the Mechanical Equipment Schedules from original design.

1.2 SUMMARY –

ALL MECHANICAL HVAC SYSTEMS SHALL BE COVERED UNDER THIS SCOPE OF WORK

A. Section Includes:

1. Balancing Air Systems:
 a. Packaged Heat Pumps
 b. Air Handling Units
 c. Fan-Coil Units
 d. Split Systems
 e. Fans
 f. Air Terminal Units

2. Balancing Water Side Systems:
 a. HVAC Pumps
 b. Water Chillers
 c. Air Handling Units
 d. Fan-Coil Units

3. Testing, Adjusting, and Balancing Equipment:
 a. Motors.
 b. Condensing Section.
 c. HVAC Pumps
 d. Packaged Heat Pumps
 e. Water Chillers
 f. Electric Duct Heaters
 g. Electric Unit Heaters
 h. Ceiling Electric Unit Heaters
 i. Air Handling Units
 j. Fan-Coil Units
 k. Electric Radiant Panel Heaters
 l. Split Systems
 m. Fans
 n. Sound Attenuators
4. Testing, adjusting, and balancing existing systems and equipment.
5. Sound tests.
6. Vibration tests.
7. Control system verification.

1.3 DEFINITIONS

B. BAS: Building automation systems.
D. TAB: Testing, adjusting, and balancing.
F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
G. TDH: Total dynamic head.

1.4 PREINSTALLATION MEETINGS

A. TAB Conference: If requested by the Owner, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 10 calendar days’ advance notice of scheduled meeting time and location.

1. Minimum Agenda Items:
 b. The TAB plan.
 c. Needs for coordination and cooperation of trades and subcontractors.
 d. Proposed procedures for documentation and communication flow.
 e. Project Schedule
 f. Contractor’s proposed process for project execution

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: Within 20 calendar days of Contractor's Notice to Proceed, submit documentation that the TAB specialist and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.

D. System Readiness Checklists: Within 20 calendar days of Contractor's Notice to Proceed, submit system readiness checklists as specified in "Preparation" Article.

E. Examination Report: Submit a summary report of the examination review required in "Examination" Article.

F. Certified TAB reports.

G. Sample report forms.

H. Instrument calibration reports, to include the following:
 1. Instrument type and make.
 2. Serial number.
 3. Application.
 4. Dates of use.
 5. Dates of calibration.

1.6 QUALITY ASSURANCE

A. TAB Contractor shall use employees per paragraph 1.6.B or 1.6.C.

B. TAB Specialists Qualifications: Certified by AABC.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by AABC.
 2. TAB Technician: Employee of the TAB specialist and certified by AABC as a TAB technician.

C. TAB Specialists Qualifications: Certified by NEBB or TABB.
 1. TAB Field Supervisor: Employee of the TAB specialist and certified by NEBB or TABB.
 2. TAB Technician: Employee of the TAB specialist and certified by NEBB or TABB as a TAB technician.

D. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."

E. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.7.2.3 - "System Balancing."

1.7 FIELD CONDITIONS

A. Building will be occupied during Construction. Contractor is required to coordinate with the OWNER before beginning work. Some areas will require an OWNER provide escort to be with the Contractor. The coordination with the escort shall be performed by the Contractor.
B. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

C. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 TAB SPECIALISTS

A. Subject to compliance with requirements:

1. TAB specialist shall be a third-party company independent of the mechanical or general contractor.

3.2 EXAMINATION

A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.

B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible. Notify OWNER if existing devices are not in condition to be used for this scope of work or if they are malfunctioning or broken. Contractor shall be responsible for repairing any items broken by the Contractor during this Scope of Work.

C. Examine the original design documents for HVAC systems and equipment.

D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.

E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

F. Examine equipment performance data including fan and pump curves.

1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.

2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in...
AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems - Duct Design." Compare results with the design data and installed conditions.

G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.

H. Examine test reports specified in individual system and equipment Sections.

I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.

J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible and their controls are connected and functioning.

K. Examine heat-transfer coils for correct piping connections and for clean and straight fins.

L. Examine operating safety interlocks and controls on HVAC equipment.

M. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.3 PREPARATION

A. Prepare a TAB plan that includes the following:

1. Equipment and systems to be tested.
3. Instrumentation to be used.
4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:
 a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
 b. Duct systems are complete with terminals installed.
 c. Volume, smoke, and fire dampers are open and functional.
 d. Filter condition. Notify OWNER if filters need to be replaced before testing.
 e. Fans are operating, free of vibration, and rotating in correct direction.
 f. Variable-frequency controllers' are functioning as designed and safeties are verified.
 g. Automatic temperature-control systems are operational.
 h. Ceilings are installed. (note any spaces that ceiling or ceiling tiles are missing)
 i. Suitable access to balancing devices and equipment is provided.
3.4 GENERAL PROCEDURES FOR TESTING AND BALANCING

A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" or SMACNA's "HVAC Systems - Testing, Adjusting, and Balancing" and in this Section.

B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 2. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish to match existing.

C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.

D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.5 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.

B. Prepare schematic diagrams of systems' "as-built" duct layouts.

C. For variable-air-volume systems, develop a plan to simulate diversity.

D. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.

E. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.

F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.

G. Verify that motor starters are equipped with properly sized thermal protection.

H. Check dampers for proper position to achieve desired airflow path.

I. Check for airflow blockages.

J. Check condensate drains for proper connections and functioning.

K. Check for proper sealing of air-handling-unit components. Repair any duct leakages. Connect any loose flex ductwork.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

A. Adjust the variable-air-volume systems as follows:
1. Verify that the system static pressure sensor is located two-thirds of the distance down the duct from the fan discharge.
2. Verify that the system is under static pressure control.
3. Select the terminal unit that is most critical to the supply-fan airflow. Measure inlet static pressure, and adjust system static pressure control set point so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
4. Calibrate and balance each terminal unit for maximum and minimum design airflow as follows:
 a. Adjust controls so that terminal is calling for maximum airflow. Some controllers require starting with minimum airflow. Verify calibration procedure for specific project.
 b. Measure airflow and adjust calibration factor as required for design maximum airflow. Record calibration factor.
 c. When maximum airflow is correct, balance the air outlets downstream from terminal units.
 d. Adjust controls so that terminal is calling for minimum airflow.
 e. Measure airflow and adjust calibration factor as required for design minimum airflow. Record calibration factor. If no minimum calibration is available, note any deviation from design airflow.
 f. When in full cooling or full heating, ensure that there is no mixing of hot-deck and cold-deck airstreams unless so designed.
 g. On constant volume terminals, in critical areas where room pressure is to be maintained, verify that the airflow remains constant over the full range of full cooling to full heating. Note any deviation from design airflow or room pressure.
5. After terminals have been calibrated and balanced, test and adjust system for total airflow. Adjust fans to deliver total design airflows within the maximum allowable fan speed listed by fan manufacturer.
 a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 b. Set terminals for maximum airflow. If system design includes diversity, adjust terminals for maximum and minimum airflow so that connected total matches fan selection and simulates actual load in the building.
 c. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 d. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 e. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
6. Measure fan static pressures as follows:
 a. Measure static pressure directly at the fan outlet or through the flexible connection.
 b. Measure static pressure directly at the fan inlet or through the flexible connection.
 c. Measure static pressure across each component that makes up the air-handling system.
 d. Report any artificial loading of filters at the time static pressures are measured.
7. Set final return and outside airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 a. Balance the return-air ducts and inlets the same as described for constant-volume air systems.
 b. Verify that terminal units are meeting design airflow under system maximum flow.

8. Re-measure the inlet static pressure at the most critical terminal unit and adjust the system static pressure set point to the most energy-efficient set point to maintain the optimum system static pressure. Record set point and give to controls contractor.

9. Verify final system conditions as follows:
 a. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to match design if necessary.
 b. Re-measure and confirm that total airflow is within design.
 c. Re-measure final fan operating data, rpms, volts, amps, and static profile.
 d. Mark final settings.
 e. Test system in economizer mode. Verify proper operation and adjust if necessary. Measure and record all operating data.
 f. Verify tracking between supply and return fans.

3.7 PROCEDURES FOR MOTORS

A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 1. Manufacturer's name, model number, and serial number.
 4. Phase and hertz.
 5. Nameplate and measured voltage, each phase.
 6. Nameplate and measured amperage, each phase.
 7. Starter size and thermal-protection-element rating.
 8. Service factor and frame size.

B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.8 PROCEDURES FOR CONDENSING SECTIONS

A. Verify proper rotation of fans.

B. Measure entering- and leaving-air temperatures.

C. Record fan and motor operating data.

3.9 CONTROLS VERIFICATION

A. In conjunction with system balancing, perform the following:
 1. Verify temperature control system is operating within the design limitations.
2. Confirm that the sequences of operation are in compliance with Contract Documents.
3. Verify that controllers are calibrated and function as intended.
4. Verify that controller set points are as indicated.
5. Verify the operation of lockout or interlock systems.
6. Verify the operation of valve and damper actuators.
7. Verify that controlled devices are properly installed and connected to correct controller.
8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.

B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.10 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS

A. Perform a preconstruction inspection of existing equipment that is to remain and be reused.
 1. Measure and record the operating speed, airflow, and static pressure of each fan.
 2. Measure motor voltage and amperage. Compare the values to motor nameplate information.
 3. Check the refrigerant charge.
 4. Check the condition of filters.
 5. Check the condition of coils.
 6. Check the operation of the drain pan and condensate-drain trap.
 7. Check bearings and other lubricated parts for proper lubrication.

B. Before performing testing and balancing of existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. Verify the following:
 1. New filters are installed.
 2. Coils are clean and fins combed.
 3. Drain pans are clean.
 4. Fans are clean.
 5. Bearings and other parts are properly lubricated.
 6. Deficiencies noted in the preconstruction report are corrected.

C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work.
 1. Compare the indicated airflow of the renovated work to the measured fan airflows, and determine the new fan speed and the face velocity of filters and coils.
 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer.
 3. If calculations increase or decrease the airflow rates and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated rates. If increase or decrease is 5 percent or less, equipment adjustments are not required.
4. Balance each air outlet.

3.11 TOLERANCES

A. Set HVAC system's airflow rates within the following tolerances:

1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent
2. Air Outlets and Inlets: Plus or minus 10 percent

B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.12 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

B. Status Reports: Prepare biweekly progress reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors.

3.13 FINAL REPORT

A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.

1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
2. Include a list of instruments used for procedures, along with proof of calibration.
3. Certify validity and accuracy of field data.

B. Final Report Contents: In addition to certified field-report data, include the following:

1. Fan curves.
2. Manufacturers' test data.
3. Field test reports prepared by system and equipment installers.
4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.

C. General Report Data: In addition to form titles and entries, include the following data:

1. Title page.
2. Name and address of the TAB specialist.
3. Project name.
4. Project location.
5. Architect's name and address.
6. Engineer's name and address.
7. Contractor's name and address.
9. Signature of TAB supervisor who certifies the report.
10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
11. Summary of contents including the following:
 a. Indicated versus final performance.
 b. Notable characteristics of systems.
 c. Description of system operation sequence if it varies from the Contract Documents.
12. Nomenclature sheets for each item of equipment.
13. Data for terminal units, including manufacturer's name, type, size, and fittings.
14. Notes to explain why certain final data in the body of reports vary from indicated values.
15. Test conditions for fans and pump performance forms including the following:
 a. Settings for outdoor-, return-, and exhaust-air dampers.
 b. Conditions of filters.
 c. Cooling coil, wet- and dry-bulb conditions.
 d. Face and bypass damper settings at coils.
 e. Fan drive settings including settings and percentage of maximum pitch diameter.
 f. Inlet vane settings for variable-air-volume systems.
 g. Settings for supply-air, static-pressure controller.
 h. Other system operating conditions that affect performance.

D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 1. Quantities of outdoor, supply, return, and exhaust airflows.
 2. Water and steam flow rates.
 3. Duct, outlet, and inlet sizes.
 4. Pipe and valve sizes and locations.
 5. Terminal units.

E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 1. Unit Data:
 a. Unit identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Unit arrangement and class.
 g. Discharge arrangement.
 h. Sheave make, size in inches (mm), and bore.
 i. Center-to-center dimensions of sheave and amount of adjustments in inches (mm).
j. Number, make, and size of belts.

k. Number, type, and size of filters.

2. Motor Data:

a. Motor make, and frame type and size.

b. Horsepower and rpm.

c. Volts, phase, and hertz.

d. Full-load amperage and service factor.

e. Sheave make, size in inches (mm), and bore.

f. Center-to-center dimensions of sheave and amount of adjustments in inches (mm).

3. Test Data (Indicated and Actual Values):

a. Total airflow rate in cfm (L/s).

b. Total system static pressure in inches wg (Pa).

c. Fan rpm.

d. Discharge static pressure in inches wg (Pa).

e. Filter static-pressure differential in inches wg (Pa).

f. Preheat-coil static-pressure differential in inches wg (Pa).

g. Cooling-coil static-pressure differential in inches wg (Pa).

h. Heating-coil static-pressure differential in inches wg (Pa).

i. Outdoor airflow in cfm (L/s).

j. Return airflow in cfm (L/s).

k. Outdoor-air damper position.

l. Return-air damper position.

m. Vortex damper position.

F. Apparatus-Coil Test Reports:

1. Coil Data:

a. System identification.

b. Location.

c. Coil type.

d. Number of rows.

e. Fin spacing in fins per inch (mm) o.c.

f. Make and model number.

g. Face area in sq. ft. (sq. m).

h. Tube size in NPS (DN).

i. Tube and fin materials.

j. Circuiting arrangement.

2. Test Data (Indicated and Actual Values):

a. Airflow rate in cfm (L/s).

b. Average face velocity in fpm (m/s).

c. Air pressure drop in inches wg (Pa).

d. Outdoor-air, wet- and dry-bulb temperatures in deg F (deg C).

e. Return-air, wet- and dry-bulb temperatures in deg F (deg C).

f. Entering-air, wet- and dry-bulb temperatures in deg F (deg C).

g. Leaving-air, wet- and dry-bulb temperatures in deg F (deg C).
h. Water flow rate in gpm (L/s).
i. Water pressure differential in feet of head or psig (kPa).
j. Entering-water temperature in deg F (deg C).
k. Leaving-water temperature in deg F (deg C).
l. Refrigerant expansion valve and refrigerant types.
m. Refrigerant suction pressure in psig (kPa).
n. Refrigerant suction temperature in deg F (deg C).
o. Inlet steam pressure in psig (kPa).

G. Gas-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:

1. Unit Data:

 a. System identification.
 b. Location.
 c. Make and type.
 d. Model number and unit size.
 e. Manufacturer's serial number.
 f. Fuel type in input data.
 g. Output capacity in Btu/h (kW).
 h. Ignition type.
 i. Burner-control types.
 j. Motor horsepower and rpm.
 k. Motor volts, phase, and hertz.
 l. Motor full-load amperage and service factor.
 m. Sheave make, size in inches (mm), and bore.
 n. Center-to-center dimensions of sheave and amount of adjustments in inches (mm).

2. Test Data (Indicated and Actual Values):

 a. Total airflow rate in cfm (L/s).
 b. Entering-air temperature in deg F (deg C).
 c. Leaving-air temperature in deg F (deg C).
 d. Air temperature differential in deg F (deg C).
 e. Entering-air static pressure in inches wg (Pa).
 f. Leaving-air static pressure in inches wg (Pa).
 g. Air static-pressure differential in inches wg (Pa).
 h. Low-fire fuel input in Btu/h (kW).
 i. High-fire fuel input in Btu/h (kW).
 j. Manifold pressure in psig (kPa).
 k. High-temperature-limit setting in deg F (deg C).
 l. Operating set point in Btu/h (kW).
 m. Motor voltage at each connection.
 n. Motor amperage for each phase.
 o. Heating value of fuel in Btu/h (kW).

H. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:

1. Unit Data:
a. System identification.
b. Location.
c. Coil identification.
d. Capacity in Btu/h (kW).
e. Number of stages.
f. Connected volts, phase, and hertz.
g. Rated amperage.
h. Airflow rate in cfm (L/s).
i. Face area in sq. ft. (sq. m).
j. Minimum face velocity in fpm (m/s).

2. Test Data (Indicated and Actual Values):

a. Heat output in Btu/h (kW).
b. Airflow rate in cfm (L/s).
c. Air velocity in fpm (m/s).
d. Entering-air temperature in deg F (deg C).
e. Leaving-air temperature in deg F (deg C).
f. Voltage at each connection.
g. Amperage for each phase.

I. Fan Test Reports: For supply, return, and exhaust fans, include the following:

1. Fan Data:

a. System identification.
b. Location.
c. Make and type.
d. Model number and size.
e. Manufacturer's serial number.
f. Arrangement and class.
g. Sheave make, size in inches (mm), and bore.
h. Center-to-center dimensions of sheave and amount of adjustments in inches (mm).

2. Motor Data:

a. Motor make, and frame type and size.
b. Horsepower and rpm.
c. Volts, phase, and hertz.
d. Full-load amperage and service factor.
e. Sheave make, size in inches (mm), and bore.
f. Center-to-center dimensions of sheave, and amount of adjustments in inches (mm).
g. Number, make, and size of belts.

3. Test Data (Indicated and Actual Values):

a. Total airflow rate in cfm (L/s).
b. Total system static pressure in inches wg (Pa).
c. Fan rpm.
d. Discharge static pressure in inches wg (Pa).
e. Suction static pressure in inches wg (Pa).
J. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:

1. Report Data:
 a. System and air-handling-unit number.
 b. Location and zone.
 c. Traverse air temperature in deg F (deg C).
 d. Duct static pressure in inches wg (Pa).
 e. Duct size in inches (mm).
 f. Duct area in sq. ft. (sq. m).
 g. Indicated airflow rate in cfm (L/s).
 h. Indicated velocity in fpm (m/s).
 i. Actual airflow rate in cfm (L/s).
 j. Actual average velocity in fpm (m/s).
 k. Barometric pressure in psig (Pa).

K. Air-Terminal-Device Reports:

1. Unit Data:
 a. System and air-handling unit identification.
 b. Location and zone.
 c. Apparatus used for test.
 d. Area served.
 e. Make.
 f. Number from system diagram.
 g. Type and model number.
 h. Size.
 i. Effective area in sq. ft. (sq. m).

2. Test Data (Indicated and Actual Values):
 a. Airflow rate in cfm (L/s).
 b. Air velocity in fpm (m/s).
 c. Preliminary airflow rate as needed in cfm (L/s).
 d. Preliminary velocity as needed in fpm (m/s).
 e. Final airflow rate in cfm (L/s).
 f. Final velocity in fpm (m/s).
 g. Space temperature in deg F (deg C).

L. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:

1. Unit Data:
 a. System and air-handling-unit identification.
 b. Location and zone.
 c. Room or riser served.
 d. Coil make and size.
 e. Flowmeter type.

2. Test Data (Indicated and Actual Values):
a. Airflow rate in cfm (L/s).

b. Entering-air temperature in deg F (deg C).

c. Leaving-air temperature in deg F (deg C).

M. Instrument Calibration Reports:

1. Report Data:

a. Instrument type and make.

b. Serial number.

c. Application.

d. Dates of use.

e. Dates of calibration.

3.14 VERIFICATION OF TAB REPORT

A. The TAB specialist's test and balance engineer shall conduct the inspection in the presence of Owner.

B. If TAB work fails, proceed as follows:

1. TAB specialists shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.

2. If the second final inspection also fails, Owner may contract the services of another TAB specialist to complete TAB work according to the Contract Documents and deduct the cost of the services from the original TAB specialist's final payment.

C. Prepare test and inspection reports.

3.15 ADDITIONAL TESTS

A. Within 10 calendar days of completing TAB, perform additional TAB to verify that balanced conditions are being maintained throughout and to correct unusual conditions. For airside, only confirmation of airflow at major pieces of equipment and 20% of the diffusers is required. If any test fails, the entire system associated with that test location shall be re-balanced by the Contractor at no additional cost to the OWNER.

B. Seasonal Periods: Not required.

END OF SECTION 23 05 93